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                                        ABSTRCT 

            Higher order (b, F, α, β, ρ, d)-convexity is considered. A multiobjective programming problem (MP) 

in which the numerator and denominator of objective function contain square root of positive semidefinite 

quadratic form. Mond-Weir and Wolfe type duals are considered for multiobjective programming problem. 

Duality results are established for multiobjective programming problem under higher order  (b, F, α, β, ρ, d)-

convexity assumptions. The results are also applied for multiobjective fractional programming problem. 
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  1. INTRODUCTION:        

         Convexity plays an important role in the optimization theory. In inequality constrained optimization 

the Kuhn-Tucker conditions are sufficient for optimality if the functions are convex. However, the 

application of the Kuhn-Tucker conditions as sufficient conditions for optimality is not restricted to convex 

problems as many mathematical models used in decision sciences, economics, management sciences, 

stochastics, applied mathematics and engineering involve non convex functions.  

         B-vex functions were introduced by Bector and Singh [1]. Pseudo b-vex and quasi b-vex functions 

were introduced by Bector et al. [2] and sufficient optimality conditions and duality results for a nonlinear 

programming problem were obtained under b-vexity conditions on the functions involved. Patel and Naik [3] 

introduced the concept of b-V-type I functions and their generalizations. Sufficient optimality conditions and 

duality results were established for multiobjective programming problem for above defined classes of 

functions. 

         The concept of (F,ρ)-convexity was considered by Preda [4] as an extension of F-convexity defined by 

Hanson and Mond [5] and ρ-convexity defined by Vial [6]. Liang et. al. [7] considered a unified formulation 

of generalized convexity called (F,α,ρ,d)-convexity and obtained some optimality conditions and duality 

results for nonlinear fractional programming problems. A number of sufficiency theorems for efficient and 

properly efficient solutions under various generalized convexity assumptions for multiobjective 

programming problems were obtained by Ahmad [9]. Yuan et. al. [10] introduced the concept of (C,α,ρ,d)-

convexity which is the generalization of (F,α,ρ,d)-convexity, and proved optimality conditions and duality 

theorems for non-differentiable minimax fractional programming problems. 

http://www.jetir.org/


© 2018 JETIR January 2018, Volume 5, Issue 1                                                         www.jetir.org (ISSN-2349-5162) 

JETIR1801249 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1338 
 

        A second order parametric dual for a nondifferentiable minimax fractional programming problem 

involving square root terms of  positive semidefinite quadratic forms was formulated by Ahmad [13] and 

proved duality results using the concept of second order generalized (F,α,ρ,d)-convexity.  Tripathy and Devi 

[14] introduced a second order multiobjective mixed symmetric duality containing square root term with 

generalized invex function and  established weak duality, strong duality and converse duality theorems 

under second order (F,ρ)-invexity and (F,ρ)-pseudo invexity assumptions. Tripathy [15] considered a second 

order duality in multiobjective fractional programming with square root term under generalized univex 

function and a parameterization technique is used to establish duality results under generalized second order 

𝜌-univexity assumption. Sonali et. al. [16] considered second order duality for  minimax fractional 

programming  with  square  root  term involving   generalized b-(p, r)-invex functions. 

          In this chapter, we have considered higher order (b,F,α,β,ρ,d)-convex functions. Under the generalized 

convexity assumptions, we obtain sufficient optimality conditions for multiobjective programming problem 

with square root term. Mond-Weir and Wolfe type duals are considered for multiobjective programming 

problem with square root term. Duality results are established for multiobjective programming problem with 

square root term under higher order (b,F,α,β,ρ,d)-convexity assumptions. The results are also applied for 

multiobjective fractional programming problem with square root term.  

 

2. NOTATIONS AND PRELIMINARIES: 

We introduce the class of higher order (b,F,α,β,ρ,d)-convex functions as follows: 

         Let X ⊆ Rn be an open set. Let fi : X→R, K: X×Rn→ R be differentiable functions, F:X×X×Rn→R be a 

sublinear functional in the third variable and d: X×X →R. Further, let ρ  be a real number, 
1 2ρ = (ρ ,ρ ),

 

1 1 1 1 k

1 2 kρ = (ρ ,ρ ,...,ρ ) R , 2 2 2 2 m

1 2 mρ = (ρ ,ρ ,...,ρ ) R ,   and α, β: X×X → R+\{0}. 

Definition 2.1: The function fi is said to be higher order (b,F,α,β,ρ1,d)-convex at 

0x ,  if for all x ∈ X and p ∈ Rn, 

 b(x, 0x )[fi(x) – fi(
0x )] ≧  F(x, 0x :α(x, 0x ){∇fi (

0x )+∇p K( 0x ,p)}) 

                                            + β(x, 0x ){K( 0x ,p) – pT ∇p K( 0x ,p)}+ ρ1d2(x, 0x ). 

Remark 2.1: Let K ( 0x , p) = 0, b(x, 0x )=1. 

(i)  Then the above definition becomes that of (F,α,ρ,d)- convex function introduced by Liang et. al.[7]. 

 (ii) If α(x, 0x ) = 1, we obtain the definition of (F,ρ)-convex function  given  by Preda  [4]. 

(iii)  If α(x, 0x ) = 1, ρ = 0 and F(x, 0x ; ∇𝜙( 0x )) = ηT(x, 0x )∇ 𝜙( 0x ) for a certain map η: X×X→Rn, then 

(F,α,β,ρ,d)-convexity reduces to the invexity in Hanson [12]. 

(iv) If F is convex with respect to the third argument, then we obtain the definition of (F,α,ρ,d)-convex 

function introduced by Yuan et. al. [10].    

Remark 2.2: Let β (x, 0x ) = 1, b(x, 0x )=1. 

(i) If K( 0x ,p)=  T 2 01
p x p,

2
 then the above inequality reduces to the definition  of second order 

(F,α,ρ,d)-convex function given by Ahmad and Husain [11].     

http://www.jetir.org/


© 2018 JETIR January 2018, Volume 5, Issue 1                                                         www.jetir.org (ISSN-2349-5162) 

JETIR1801249 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1339 
 

(ii) If α(x, 0x ) =1, ρ = 0, K( 0x ,p) =  T 2 01
p x p,

2
 and F(x, 0x ; a) =ηT(x, 0x )a, where η:X×X→Rn, the 

above definition becomes that of  η-bonvexity introduced by Pandey [18]. 

   

       We consider the following multiobjective programming   problem with square root term: 

(MPS)  
1 1

T T2 2
i 1 1 k k Minimize   f (x) = f (x)+ (x B x) ,...,f (x)+(x B x) 

  
 

               subject to     jh (x) ≤ 0 ; x ∈ X, 

where X is an open subset of Rn and the functions   k

i 1 2 kf : f ,f ,...,f :X R
 

and 

  m

j 1 2 mh : h ,h ,...,h : X R  are differentiable on X. Bi, i=1,2,…,k are positive semi definite matrices of 

order n. Let U = {x ∈ X: jh (x) ≦ 0} denote the set of all feasible solutions for (MPS). 

Proposition 2.1: (Kuhn-Tucker Necessary Optimality Conditions (Mangasarian [17]): 

Let 0x ∈ U be an optimal solution of (MPS) and let hj satisfy a constraint qualification. Then there exists a 

0μ ∈Rk, 0λ ∈ Rm and w ∈ Rn  such that 

              i

k m
0 0 0 0

i i j j

i=1 j=1

μ [ f (x ) +B w] + h (x )λ   =  0,                 (2.1) 

               

1
0 0T 0 2

i if (x ) + (x  B x )  =  0, i = 1,2,...k.

                     
(2.2)   

               

0T 0

j jλ h (x ) 0,
                                                                  (2.3) 

               

0T 0

i(x B x )  1, i = 1,2,...k.

                           
(2.4)

    

                

1
0T 0 0T2

i i(x B x )  = (x B w), i = 1,2,...k.

                          
(2.5)

 
               

0 0 0

i j jμ 0,  λ 0, h (x ) 0,                                          (2.6)  

                Where 
0

jh (x )
 
denotes the k×m  matrix 0 0 0

1 2 mh (x ), h (x ),..., h (x ) .      

3. SUFFICIENT OPTIMALITY CONDITIONS: 

        We have established Kuhn-Tucker sufficient optimality conditions for (MPS) under (b,F,α,β,ρ,d)-

convexity assumptions. 

Theorem 3.1: Let 0x ∈ U,
0μ ∈Rk and 0λ ∈ Rm satisfy (2.1)-(2.3). If 

(i) fi is higher order (b,F,α,β,ρ1,d)-convex at 0x ,        

(ii) 0T

jλ h  is higher order (b,F,α,β,ρ2,d)-convex at 0x  and 

(iii)  ρ1 + ρ2 ≧ 0, 

       then 0x  is an optimal solution of the problem (MPS). 

Proof:  Let 0x ∈ U. Since fi is higher order (b,F,α,β,ρ1,d)-convex at 0x , for all x ∈ U, we have 

  b(x, 0x )[
1 1

T 0 0T 02 2
i i i i[f (x)+(x B x) ] - [f (x )+(x B x ) ] ] 

               ≧ F(x, 0x ;α(x, 0x ) 0 0

i i iμ [ f (x )+B w] +∇pK( 0x ,p)}) 
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                   +β(x, 0x )[K( 0x ,p)–pT∇pK( 0x ,p)]+ρ1d2(x, 0x ).                             (3.1)      

 Using (2.1), we get 

   b(x, 0x )[
1 1

T 0 0T 02 2
i i i i[f (x)+(x B x) ] - [f (x )+(x B x ) ] ]   

       ≧ F(x, 0x ;α(x, 0x ){- ∇hj(
0x )

0

jλ +∇p K( 0x ,p)}) 

                   +β(x, 0x ){K( 0x ,p)– pT∇pK( 0x ,p)}+ρ1d2(x, 0x ).                        (3.2)       

Also, 0T

jλ h  is higher order (b,F,α,β,ρ2,d)-convex at 0x . Therefore 

     
0 0T 0T 0

j jb(x,x ) λ h (x) - λ h (x )  ≧F(x, 0x ;α(x, 0x )[∇ 0Tλ hj(
0x ) 

                    -∇pK( 0x , p)])-β(x, 0x ){K( 0x ,p)–pT∇pK( 0x ,p)}+ρ2d2(x, 0x ).   (3.3) 

Since 0T 0

jλ h (x ) 0, 0λ 0  and  jh (x)  0,we get  

  0    ≧    F(x, 0x ; α(x, 0x )[∇ 0Tλ hj(
0x ) - ∇pK( 0x , p)]) 

           -β(x, 0x ){K( 0x , p)–pT∇pK( 0x , p)}+ρ2d2(x, 0x ).                                  (3.4)                              

Adding the inequalities (3.2) and (3.4), we obtain 

           
1 1

0 T 0 0T 02 2
i i i ib(x,x ) [f (x)+(x B x) ] - [f (x )+(x B x ) ] 

  
 ≧ (ρ

1+ρ2)d2(x, 0x ), 

which by hypothesis (iii) implies, 

               
1 1

T 0 0T 02 2
i i i i[f (x)+(x B x) ]    [f (x )+(x B x ) ] . 

Hence 0x  is an optimal solution of the problem (MPS). 

4. MOND-WEIR DUALITY: 

        We have established weak and strong duality theorems for the following Mond-Weir dual (MWMDS) 

for (MPS): 

(MWMDS)   Maximize  
1

T 2
i if (u)+(u B u) ,   

                      subject to 
k m

i i i j j

i=1 j=1

μ [ f (u) +B w]+ h (u)λ  = 0,                      (4.1)                                                                 

                                      
T

j jλ h (u)  0, j=1,2,...,m
 
                                     (4.2) 

                                      T

iu B u  1, i = 1,2,...k.

  

  

                                                               
1

T T2
i i(u B u)  = (u B w),  

                                       u ∈ X, iμ ≧ 0,λj ≧ 0, iμ ∈ Rk, λj ∈ Rm, w∈ Rn.         (4.3)                                                                         

Theorem 8.4.1: (Weak Duality): Let x and (u,μ,λ) be feasible solutions of (MPS) and (MWMDS) 

respectively. Let 

         (i)  fi be higher order (b,F,α,β,ρ1,d)-convex at u, 

                     (ii) T

jλ h  be higher order (b,F,α,β,ρ2,d)-convex at u, and 

                     (iii) ρ1 + ρ2 ≧ 0. 

     Then               
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1 1

T T2 2
i i i i[f (x)+(x B x) ]  [f (u)+(u B u) ].  

 Proof:  By hypothesis (i), we have 

   
1 1

T T2 2
i i i ib(x,u) [f (x)+(x B x) ] - [f (u)+(u B u) ] 

  
  

            ≧ F(x, u; α(x,u){ i i iμ [ f (u)+B w] +∇pK( u ,p)}) 

                +β(x,u)[K(u ,p)–pT∇pK(u ,p)]+ρ1d2(x,u).                              (4.4) 

Also hypothesis (ii) yields 

      
T T

j jb(x,u) λ h (x) - λ h (u)     ≧  F(x,u; α(x,u)[∇ Tλ hj(u) 

                                 -∇pK( u ,p)]) -β(x,u)[K(u ,p) – pT∇p K(u ,p)]+ ρ2d2(x,u).                          

 By (4.2), (4.3) and hj(x) ≦ 0, it follows that  

          0   ≧ F(x, u; α(x,u)[∇ Tλ hj(u) - ∇pK(u ,p)]) 

               -β(x, u)[K(u ,p)–pT∇pK(u ,p)]+ρ2d2(x,u).                                 (4.5)                

Adding the inequalities (4.4), (4.5) and applying the properties of sublinear functional, we obtain     

1 1
T T2 2

i i i ib(x,u) [f (x)+(x B x) ] - [f (u)+(u B u) ] 
  

 

      ≧   F(x, u;α(x,u)[ i i iμ [ f (u)+B w] + ∇ Tλ hj(u)]) 

          + [ρ1d2(x,u) + ρ2d2(x,u)]. 

which in view of (4.1) implies 

1 1
T T2 2

i i i ib(x,u) [f (x)+(x B x) ] - [f (u)+(u B u) ] 
  

 ≧ (ρ
1+ρ2)d2(x,u). 

Using hypothesis (iii) in the above inequality, we get 

                     
1 1

T T2 2
i i i i[f (x)+(x B x) ]  [f (u)+(u B u) ].  

Theorem 4.2: (Strong Duality): Let 0x  be an optimal solution of the problem (MPS) and let hj satisfy a 

constraint qualification. Further, let Theorem 4.1 hold for the feasible solution 0x  of (MPS) and all feasible 

solutions (u,μ,λ) of (MWMDS). Then there exists a 
0μ ∈Rk

,
0λ ∈Rm

+ such that ( 0x , 0μ , 0λ ) is an optimal 

solution of (MWMDS). 

Proof:  Since 0x  is an optimal solution for the problem (MPS) and hj satisfies a constraint qualification, by 

Proposition 2.1 there exists a 
0μ ∈ Rk

,
0λ ∈ Rm

+ such that the Kuhn-Tucker conditions, (2.1)-(2.3) hold. 

Hence ( 0x , 0μ , 0λ ) is feasible for (MWMDS). 

        Now, let (u,μ,λ) be any feasible solution of (MWMDS). Then by weak duality (Theorem 2.1), we have 

           
1 1

0 0T 0 T2 2
i i i i[f (x )+(x B x ) ]  [f (u)+(u B u) ].  

Therefore ( 0x , 0μ , 0λ ) is an optimal solution of (MWMDS). 

          5. APPLICATION IN MULTIOBJECTIVE FRACTIONAL PROGRAMMING:  

         The multiobjective programming problem (MPS) becomes the following multiobjective fractional 

programming problem (MFPS) with square root term: 
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 (MFPS)  Minimize   

1
T 2

i i

1
T 2

i i

f (x)+(x B x)
,  i=1,2,...,k.

g (x)-(x C x)  

     subject  to   j

T

jλ h (x)≦ 0, j=1,2,…,m.  x ∈ X. 

                                    T

ix B x 1,  i=1,2,...,k.

  

  

                                                            
1

T T2
i i(x B x)  = (x B w),  

            
  
λj  ≧ 0, λj ∈ Rm. 

      

where fi,gi: X→R, fi(x) ≧ 0 and gi (x) >0 on X  and hj(x), j=1,2,…,m are differentiable functions, Bi and 

Ci, i =1,2,…,k   are positive  semi-definite matrices of order n.  

         We now prove the following result, which gives higher order (b,F,
0α , 0β , ρ,

0d )-convexity of the ratio 

function 

1
T 2

i i

1
T 2

i i

f (x)+(x B x)
.

g (x)-(x C x)
 

Theorem 5.1: Let fi (x) and –gi(x) be higher order (b,F,α,β,ρ,d)-convex at 0x . Then the multiobjective 

fractional function 

1
T 2

i i

1
T 2

i i

f (x)+(x B x)

g (x)-(x C x)
 is higher-order (b,F,

0α , 0β , ρ,
0d )-convex at 0x , where 

               
0α (x, 0x ) = α (x, 0x )

1
0 0T 0 2

i i

1
T 2

i i

g (x )-(x C x )
,

g (x)-(x C x)  

               

0β (x, 0x ) = β (x, 0x )

1
0 0T 0 2

i i

1
T 2

i i

g (x )-(x C x )
,

g (x)-(x C x)  

               

0K ( 0x ,p)=

1
0 0T 0 2

i i

1 1
0 0T 0 0 0T 0 22 2

i i i i

f (x )+(x B x )1
+

g (x )-(x C x ) [g (x )-(x C x ) ]

 
 
  

K( 0x ,p),

 

               1

2

0 0

1
T 2

i i

1
0 0T 0 2

0i i

1 1
T 0 0T 02 2

i i i i

1
d (x, x )=

[g (x)-(x C x) ]

f (x )-(x B x )
                 + d(x, x ).

[g (x)-(x C x) ].[g (x )-(x C x )









 

Proof: Since fi (x) and –gi(x) are higher order (b,F,α,β,ρ,d)-convex at 0x , we have 

 
1 1

0 T 0 0T 02 2
i i i ib(x,x ) [f (x)+(x B x) ] - [f (x )+(x B x ) ] 

  
 

          ≧ F(x, 0x , α(x, 0x ){ 0

i i[ f (x )+B w] +∇p K( 0x ,p)}) 

               +β (x, 0x ){K( 0x ,p) – pT∇p K( 0x , p)}+ ρd2(x, 0x )                                

and 
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1 1

0 T 0 0T 02 2
j j j jb(x,x ) -[g (x)+(x C x) ]+[g (x )+(x C x ) ] 

  
                                                                               

≧ F(x, 0x , α(x, 0x ){ 0

i i-[ g (x )-C w] +∇p K( 0x , p)}) 

                +β(x, 0x ){K( 0x ,p) – pT∇p K( 0x , p)}+ ρd2(x, 0x ). 

Also 

1 1
T 0 0T 02 2

0 i i i i

1 1
T 0 0T 02 2

i i i i

f (x)+(x B x) f (x )+(x B x )
b(x,x )  -  =

g (x)-(x C x) g (x )-(x C x )

 
 
  

1 1
T 0 0T 02 2

i i i i
0

1
T 2

i i

[f (x)+(x B x) ] - [f (x )+(x B x ) ]
b(x,x )  

g (x)-(x C x)

  
   




 

            

1 1 1
0 0T 0 T 0 0T 02 2 2

i i i i i i

1 1
T 0 0T 02 2

i i i i

[f (x )+(x B x ) ] -[g (x)-(x C x) ]+[g (x )-(x C x ) ]
+ .

[g (x)-(x C x) ][g (x )-(x C x ) ]

 
  




                                       

 

Using the above inequalities and sublinearity of F, we get 

1 1
T 0 0T 02 2

0 i i i i

1 1
T 0 0T 02 2

i i i i

f (x)+(x B x) f (x )+(x B x )
b(x,x )  -  

g (x)-(x C x) g (x )-(x C x )

 
 
    

 
1

T 2
i i

1

g (x)-(x C x)
 F(x, 0x ; α(x, 0x ){ 0

i i[ f (x )+B w] +∇pK( 0x , p)}) 
   

 
+

1
T 2

i i

1

g (x)-(x C x)
(β(x, 0x ){K( 0x , p)–pT∇pK( 0x ,p)}+ρd2(x, 0x ))

     



 

1
0 0T 0 2

0 0i i

1 1
T 0 0T 02 2

i i i i

0 0

i i p

f (x )+(x B x )
F x,x ;α(x,x )

[g (x)-(x C x) ][g (x )-(x C x ) ]

                                        -[ g (x )-C w]+ K( x ,p)  



 

 

   

1
0 0T 0 2

i i

1 1
T 0 0T 02 2

i i i i

f (x )+(x B x )

[g (x)-(x C x) ][g (x )-(x C x ) ]
 (β(x, 0x ){K( 0x ,p) 

                                          – pT∇pK( 0x ,p)} +ρd2(x, 0x )).  

    = F(x, 0x ;
0

1
T 2

i i

α (x, x )

g (x)-(x C x)
{ 0

i i[ f (x )+B w] +∇p K( 0x ,p)}) 

      +F(x, 0x ;α(x, 0x )

1
0 0T 0 2

i i

1 1
T 0 0T 02 2

i i i i

f (x )+(x B x )

[g (x)-(x C x) ][g (x )-(x C x ) ]  

                                                      

 0

i i-[ g (x )-C w] +∇pK( 0x ,p)}   

     +β(x, 0x )
1

T 2
i i

1

[g (x)-(x C x) ]



  
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1
0 0T 0 2

i i

1 1
T 0 0T 02 2

i i i i

f (x )-(x B x )
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In view of Theorem 5.1, the results of Section 4 lead to the following duality relations between 

(MFPS) and its Mond-Weir dual (MWMFDS). 
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                              u ∈X, μi ≥ 0, vi ≥ 0, λj ≥0, μi ∈Rk, vi ∈Rn, λj ∈Rm. 

          Similar to the proof of Theorems 4.2 and 4.3, we can establish theorems 5.2 and 5.3. Therefore, we 

simply state them here. 

Theorem 5.2: (Weak Duality): Let x and (u,μ,v,λ) be feasible solutions of (MFPS) and (MWMFDS) 

respectively. Let 

(i) fi and –gi be higher order (b,F,α,β,ρ1,d)-convex at u, 

 (ii) T

jλ h  be higher order (b,F,
0α , 0β , ρ2, 0d )-convex at u, where        

0α , 0β , 0K and 0d  are as given in 

Theorem 5.1, and 
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Theorem 5.3: (Strong Duality): Let 0x  be an optimal solution of the problem (MFPS) and let h satisfy a 

constraint qualification. Further, let Theorem 5.2 hold for the feasible solution 0x  of (MFPS) and all 

feasible solutions (u,μ,v,λ) of (MWMFDS). Then there exists a 
0μ ∈ Rk

,
0v ∈Rk, 0λ ∈ Rm

+ such that 

( 0x , 0μ , 0v , 0λ ) is an optimal solution of (MWMFDS). 

 

6. WOLFE DUALITY: 

The Wolfe dual of (MPS) and (MFPS) are respectively 
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                                   u∈X, μi≥0, vi ≥0, λj ≥0, μi∈Rk, vi∈ Rk, λj ∈Rm. 

Now, we state duality relations for the primal problems (MPS) and (MFPS) and their Wolfe duals 

(MWMDS) and (WMFDS) respectively. Their proofs follow as in Section 4. 

Theorem 6.1: (Weak Duality): Let x and (u,μ,v,λ) be feasible solutions of (MPS) and (MWMDS) 

respectively. Let 

       (i)  fi be higher order (b,F,α,β,ρ1,d)-convex at u, 
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        (ii) λThj be higher order (b,F,α,β,ρ2,d)-convex at u, and 

        (iii)  ρ1 + ρ2  ≧ 0. 

      Then                

                      fi(x)     fi (u) + λT hj (u). 

Theorem 6.2: (Strong Duality): Let 0x  be an optimal solution of the problem (MPS) and let h satisfy a 

constraint qualification. Further, let Theorem 6.1 hold for the feasible solution 0x  of (MPS) and all feasible 

solutions (u,μ,v,λ) of (WMDS). Then there exists a 
0μ ∈ Rk

,
0v ∈Rk, 0 m

+λ R  such that ( 0x , 0μ , 0v , 0λ ) 

is an optimal solution of (WMDS) and the optimal objective function values of (MPS) and (WMDS) are 

equal. 

Theorem 6.3: (Weak Duality): Let x and (u,μ,v,λ) be feasible solutions of (MFPS) and (WMFDS) 

respectively. Let 

     (i)   fi and –gi be higher order (b,F,α,β,ρ1,d)-convex at u, 

     (ii) λThj be higher order (b,F,
0α , 0β , ρ2,

0d )-convex at u, where 
0α , 0β , 0K and 

0d    are as given in 

Theorem 5.1, and 

(iii)  ρ1 + ρ2 ≧ 0. 

      Then           i i

i i

f (x) f (u)
  

g (x) g (u)
 + λT hj(u). 

Theorem 6.4: (Strong Duality):  Let 0x  be an optimal solution of the problem (MFPS) and let h satisfy a 

constraint qualification. Further, let Theorem 6.3 hold for the feasible solution 0x  of (MFPS) and all 

feasible solutions (u,μ,v,λ) of (WMFDS). Then there exists a 
0μ ∈ Rk

,
0v ∈Rk, 0 m

+λ R  such that 

( 0x , 0μ , 0v , 0λ ) is an optimal solution of (WMFDS) and the optimal objective function values of (MFPS) 

and (WMFDS) are equal. 

 

7. Conclusion  

            In this paper a new concept of generalized convexity has been introduced. Under this generalized 

convexity we have established sufficient optimality conditions and duality results for a multiobjective 

programming problem. These duality relations lead to duality in multiobjective fractional programming. 
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